Home / FSC(Second Year) Math Definitions / Inverse Hyperbolic Functions

Inverse Hyperbolic Functions

In this post we discuss about inverse Hyperbolic Function and also their domain and Range. The Inverse Hyperbolic Functions are expressed in terms of natural ;logarithms. 

Function    Formulas
Sinh-1x ln(x+\sqrt{x^2+1}), \forall \,\,\ x
Cosh-1x  ln(x+\sqrt{x^2-1}), \forall \,\,\ x\geq 1
Tanh-1x  \frac{1}{2}ln(\frac{1+x}{1-x}) , |x| < 1
Cosech-1x  ln(\frac{1}{x}+\frac{\sqrt{1+x^2}}{|x|}) , x \neq 0
Sech-1x  ln(\frac{1}{x}+\frac{\sqrt{1-x^2}}{|x|}) , 0 < x \leq 1
Coth-1x  \frac{1}{2}ln(\frac{x+1}{x-1}) , |x| < 1


Leave a Reply

Your email address will not be published. Required fields are marked *