Breaking News
Home / Differential Equations MCQs / Ordinary Differential Equations Mcqs with Answers

# Ordinary Differential Equations Mcqs with Answers

Ordinary Differential Equations Mcqs with Answers consist of mcqs. These mcqs are very important for PPSC, FPSC, NTS, CSS, PMS, and all admission Tests.

3000+ Mathematicsall subject MCQs with their Answeers

Differential Equation Related Material

Vector and tensor analysis mcqs with answers

1.  An ordinary differential equation is a differential equation containing one or more dependent variables of _____________independent variable(s).
A. One
B. Two
C. More than one
D. More than two
2.    Number of independent variables in partial differential equation are
A. Two
B. Three
C. More then two
D. More then one

3. The order of  $\fn_jvn&space;[1+(\frac{dy}{dx})^2]^{\frac{3}{2}}=&space;\frac{d^2y}{dx^2}$    is:
A. 1
B. 2
C. 3
D. None of these
4. The degree of  $\fn_jvn&space;[1+(\frac{dy}{dx})^2]^{\frac{3}{2}}=&space;\frac{d^2y}{dx^2}$    is:
A. 1
B. 2
C. 3
D. None of these
5. The order of the differential equation  $\fn_jvn&space;(\frac{d^4y}{dx^4})^{\frac{2}{5}}+5\frac{d^3y}{dx^3}+5\frac{dy}{dx}-6=0$ is:
A. 1
B. 2
C. 3
D. 4

6.   The degree of the differential equation  $\fn_jvn&space;(\frac{d^4y}{dx^4})^{\frac{2}{5}}+5\frac{d^3y}{dx^3}+5\frac{dy}{dx}-6=0$ is:
A. 1
B. 2
C. 3
D. 4

7. The order of differential equation $\fn_jvn&space;x=\frac{dy}{dx}+(\frac{dy}{dx})^2+(\frac{dy}{dx})^3+...$ is:
A. 1
B. 2
C. 3
D. 4
8. The degree of differential equation $\fn_jvn&space;x=\frac{dy}{dx}+(\frac{dy}{dx})^2+(\frac{dy}{dx})^3+...$ is:
A. 1
B. 2
C. 3
D. 4
9. An ordinary differential equation of order n, $\fn_jvn&space;F(x,y,\frac{dy}{dx},...,\frac{d^ny}{dx^n})=0$
is said to be_________________if F is a linear function of the variables $\fn_jvn&space;x,y,\frac{dy}{dx},...,\frac{d^ny}{dx^n}$.
A. Linear
B. Non Linear
A. $\fn_jvn&space;\frac{d^3y}{dx^3}+x^2\frac{dy}{dx}-y=0$
B. $\fn_jvn&space;\frac{d^3y}{dx^3}+x^2\frac{dy}{dx}-siny=0$
C. $\fn_jvn&space;\frac{d^3y}{dx^3}+x^2y\frac{dy}{dx}-y=0$
D. $\fn_jvn&space;\frac{d^3y}{dx^3}+x^2(\frac{dy}{dx})^2-y=0$