Numerical Analysis Multiple Choice Questions Answers

Dive into NA MCQs 01, a collection of 68 crucial multiple-choice questions. Mastery of these questions is highly advantageous for success in various assessments. Engage with them to significantly enhance your test performance.

This page consist of mcq on numerical methods with answers , mcq on bisection method, numerical methods objective, multiple choice questions on interpolation, mcq on mathematical methods of physics, multiple choice questions on , ,trapezoidal rule , computer oriented statistical methods mcq and mcqs of gaussian elimination method
We study Numerical Analysis for the preparation of mathematics for the purpose of M.Phil Math, P.hD math, EDUCATORS, LECTURER, SS, SSS, PPSC, FPSC tests. our team try ourselves best to touch every topic of Numerical Analysis to provide concept at all.

Note: You can also give valuable suggestions for the improvements of this subject.

1. The fixed point iteration method defined as \dpi{120} \small x_{n+1}=g(x_n) converges if

 
 
 
 

2. The equation \dpi{120} \small x^2 +3x+1=0 is known as

 
 
 
 

3. Using bisection method , the real roots of \dpi{120} \small x^3 -9x+1=0 between x=2 and x=4 is near to

 
 
 
 

4. The number of significant digits in 8.00312

 
 
 
 

5. The symbol used for backward difference operator

 
 
 
 

6. Relative error = ?

 
 
 
 

7. Newton Raphson Formula is derived from

 
 
 
 

8. By using False position method , the 2nd approximation of root of f(x)=0 is

 
 
 
 

9. The symbol used for shift operator

 
 
 
 

10. Relaxation method is known as

 
 
 
 

11. Every square matrix can be expressed as product of lower triangular and unit upper triangular matrix _________ method based on this fact

 
 
 
 

12. The rate of convergence of bisection method is

 
 
 
 

13. The order of convergence of iteration method is

 
 
 
 

14. Simpson’s rule was exact when applied to any polynomial of

 
 
 
 

15. If \dpi{120} \small f(x_n).f(x_{n-1})<0, then compute New iteration \dpi{120} \small x_{n+1} when lies b/w

 
 
 
 

16. Which of the following is iterative method

 
 
 
 

17. The Newton-Raphson method  fails if in the neighborhood of root

 
 
 
 

18. The number of significant figures in 0.021444 is

 
 
 
 

19. Numerical solutions of linear algebraic equations can be obtained by

 
 
 
 

20. Round off error occurers when 2.987654 is rounded off up to 5 significant digits is

 
 
 
 

21. To evaluate \dpi{120} \small \int_{0}^{1} f(x) dx approximately  which of the following method is used  when the value of f(x) is given only at \dpi{120} \small x=0,\frac{1}{3},\frac{2}{3}, 0

 
 
 
 

22. The equation \dpi{120} \small x^3 - log_{10}x + sin x =0 is known as

 
 
 
 

23. The formula \dpi{120} \small \int_{x_o}^{x_o + nh} f(x)dx=h[ny_o+\frac{n^2}{2}\Delta y_o+\frac{1}{2}(\frac{n^3}{3}-\frac{n^2}{2})\Delta^2 y_o+ \frac{1}{6}(\frac{n^4}{4}-n^3+n^2)\Delta^2 y_o+...] is known as

 
 
 
 

24. By using Simpson’s rule, the value of integral \dpi{120} \small \int_{0}^{1} \frac{1}{1+x^2}dx==

 
 
 
 

25. In simpson 1/3 rule, if the interval is reduced by 1/3 rd then the truncation error is reduced to

 
 
 
 

26. By using False position 2nd approximation of \dpi{120} \small x^2-x-1=0 is

 
 
 
 

27. To find the roots of equation f(x) , Newton’s Iterative formula is

 
 
 
 

28. The % error in approximating \dpi{120} \small \frac{4}{3} by 1.33 is ________%

 
 
 
 

29. The symbol used for average operator

 
 
 
 

30. The method of successive approximation is known as

 
 
 
 

31. By using Newton-Raphson method  the root b/w 0 and 1  by first approx. of \dpi{120} \small x^3-6x+4=0 is

 
 
 
 

32. The rate of convergence of secant method is

 
 
 
 

33. The fixed iterative method has ________ converges

 
 
 
 

34. Newton’s method fails to find the root of f(x)=0 if

 
 
 
 

35. By solving \dpi{120} \small x^2-2x-4=0 for x near 3 using iterative process , the correct answer up to three decimal places is

 
 
 
 

36. The False position 2nd approximation of \dpi{120} \small x^3-9x+1=0 between 2 and 4 is

 
 
 
 

37. Bisection method is also known as

 
 
 
 

38. The error in Simpson’s rule when approximating \dpi{120} \small \int_{1}^{3} \frac{dx}{x} is less than

 
 
 
 

39. Method of factorization is also known as

 
 
 
 

40. By v using iterative process \dpi{120} \small x_{n+1}=\frac{1}{2}(x_o + \frac{N}{x_n}), the positive square root of 102 correct to four decimal places is

 
 
 
 

41. To solve \dpi{120} \small x^3 -x-9=0  for x near 2 ,with Newton’s method, the correct answer up to three decimal places is

 
 
 
 

42. The process of convergence in iterative method is faster than in

 
 
 
 

43. The smallest +ve root of \dpi{120} \small x^3-5x+3=0  lies between

 
 
 
 

44. which method is known as Regula-Falsi method

 
 
 
 

45. Sum of roots of equation \dpi{120} \small x^3 - 7x^2+14x-8=0 is

 
 
 
 

46. Which of the following is the modification of Guass Elimination method

 
 
 
 

47. The rate of convergence of Guass-Seidal is twice that of

 
 
 
 

48.

  1. If \dpi{120} \small \frac{5}{6} ≅ 0.8333 then percentage error is __________ %
 
 
 
 

49. Gauss- Serial iterative method is used to solve

 
 
 
 

50. The number of significant figures in 48.710000

 
 
 
 

51. The symbol used for  forward diffefence operator is

 
 
 
 

52. In Simpson’s 1/3 rule , curve of y= f(x) is considered to be a

 
 
 
 

53. By using iterative process  \dpi{120} \small x_{n+1}=\frac{1}{2}(x_n + \frac{N}{x_n}), the positive root of 278 to five significant figures is

 
 
 
 

54. To solve \dpi{120} \small x^2 - x -2=0 by Newton-Raphson method  we choose \dpi{120} \small x_o=1, then value of \dpi{120} \small x_2 is

 
 
 
 

55. The Approximate value of \dpi{120} \small \int_{0}^{1} x^3 dx when n=3 using Trapezoidal rule is

 
 
 
 

56. Newton’s method has ____________ convergence

 
 
 
 

57. Newton-Raphson method to solve equation having formula

 
 
 
 

58. The method of false position is also known as

 
 
 
 

59. The Regula False method is somewhat similar to

 
 
 
 

60. The error in Simpson’s 1/3 rule is of order of

 
 
 
 

61. To find the root of equation f(x)=0  in (a,b) , the false position method is given as

 
 
 
 

62. By using Newton-Raphson method to solve \dpi{120} \small \sqrt{12}, the correct answer up to three decimal places is

 
 
 
 

63. The roots of equation \dpi{120} \small x^3-x-9=0 near x= 2 correct to three decimal places by using Newton-Raphson method

 
 
 
 

64. The root of \dpi{120} \small x^4 -x-10=0 by using Newton-Raphson 2nd approximation correct answer up to three decimal places is

 
 
 
 

65. The value of \dpi{120} \small \int_{1}^{10} x^2 using Trapezoidal rule is

 
 
 
 

66. \dpi{120} \small sin x + e^x is

 
 
 
 

67. The error in Trapezoidal rule is of order of

 
 
 
 

68. Which of the followong is modefication of Guass-Jocobi method

 
 
 
 

Vector and tensor analysis mcqs with answers

Useful Links:

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top