Polar form of a complex number solutions

  Polar form of a complex number. If z= x + iy is a complex number. Then z = r ( cosθ + sinθ ) is called polar form or trigonometric form of a complex number.   By comparing real and imaginary parts of a complex number,  we get x = r cosθ           (1) y = r sinθ           (2)   By squaring above equations and adding we get       EXAMPLE       Express in polar form.     Solution   With and y = −1 we obtain   Now   and    which is an angle whose terminal side is in the first quadrant.But   since the point lies in the third quadrant, we take the solution So, Therefore, polar form of the number is   Solved Questions of polar form Polar of   click here Polar for of       click here Polar for of   click here Polar for of        click here Polar for of    click here Polar for of         click here CHALLENGE   write the given complex number in polar form first using an argument θ = Arg(z) 1.       2 2.    −10 3.     −3i 4.       6i 5.       1 + i 6.     …

Continue Reading

Mathematical Methods Chapter 01 Videos

Chapter 01 Videos Exercise 1.1 In this post pakmath provide videos of Mathematical Methods for every question so that learners can learn each question very easily.If you want to see videos of fsc class then click here.     Below are the number of questions. Just click on video and see desired video https://youtu.be/I-zXhhP3CKE https://www.youtube.com/watch?v=qDLM9ss2W8I&list=PL5PCmveN5N1bIJ9MOBLEG06828NxKgCNW&index=1 https://youtu.be/K6180aU8Xb8 https://youtu.be/_JfjJWsyIQc https://youtu.be/2pom7qFTXNA https://youtu.be/zlXX783EJWo https://youtu.be/UUalA1D8dTk https://youtu.be/G8n8sEyiZvc https://youtu.be/4y8K7XrwHTE https://youtu.be/Glkt-LD6Ess https://youtu.be/AQISeDfM_t8

Continue Reading
Close Menu