## Polar form of a complex number solutions

Continue Reading Polar form of a complex number solutions

## Locus of a complex number

Locus of complex number play a very important role in the complex analysis. Today we learn how to represent and find the locus of a complex number. We can also prepare Multiple choice questions about this topic and complex analysis.          Let  P(Z) be the property that satisfied by a complex number  z = x + iy. Let there is a complex number that may satisfy the condition |z| =2. Then the set  A = { z : |z| = 2 } ⇒  { ( x, y} : | z | =     }  ⇒   { ( x, y} : | z | =     }  is called the locus of the complex number z satisfying | z | =2.       From above the locus of complex number z represents a circle with the center at ( 0, 0 ) and radius r = 2.   EXAMPLE: Find the locus of a complex number z = x + iy, such that for a fixed point , |z-z1 |= aSolution:    As    A = { z ; |z-z1 | =a }                  ⇒  { ( x, y} : | | = a }                               …

Continue Reading Locus of a complex number

## Modulus and Argument of a complex number

Modulus:    It is defined as                        Argument: Arg(Z):  It is defined as                        it is also known as amplitude of Z    symbolically amp(Z) Note:  If |Z|=0 then x=0 and y=0 The Argument θ of a complex number is not unique. If θ be the value of argument  so also is  2nπ + θ where n=0,± 1, ±2,...     Principal Value Argument.:   The value of argument which satisfy the inequality                                                    complex analysis mcqs

Continue Reading Modulus and Argument of a complex number

## Polar form of a complex number

The polar coordinates of a P are (r,θ) where r is known as modulus and  θ is the argument of a complex number Z. From above figure   a   =   r cosθ  b   =   r sinθ or  The plane is known as Argand plane or Argand Diagram or complex plane or Gaussian plane.

Continue Reading Polar form of a complex number

## Operations on Complex Numbers

Let      Z1=( x1, y1 ) =             Addition:  The sum of two complex numbers is                                                                                   Subtraction:  The difference of two complex numbers is                                                                                      Multiplication:  The product of two complex numbers is                                                 =                                                                 Division:   The Quotient of two complex Numbers is                                    =                       Remark: A set of complex numbers form a field.      …

Continue Reading Operations on Complex Numbers

## Need Of Complex Numbers

Need Of Complex Numbers Some quadratic equations which have no solutions in real numbers.  For Example 1.     2.    3.    In order to find the solutions of above given or similar quadratic equations, the symbol " i  "  was used.  Euler was the first person to introduce the symbol " i ". where                               Gauss ( 1777-1855) was a German Mathematician and was a first person to prove  in satisfactory manner that there are some algebraic equations which have real coefficients have complex roots in the form of  .   Note:   complex and irrational roots always occur in pairs.

Continue Reading Need Of Complex Numbers

## properties of complex numbers w.r.t distributive laws

Distributive laws  Left Distributive Law  Right Distributive Law

Continue Reading properties of complex numbers w.r.t distributive laws

## Properties of complex numbers w.r.t multiplication

Properties of complex Numbers If     be the three complex numbers then                                             Associative law of multiplication      Multiplicative identity.. Commutative law of multiplication For each non-zero

Continue Reading Properties of complex numbers w.r.t multiplication

## Definition ( Complex number)

Definition( Complex Number) A complex number is an element (x, y) of the set  = {  } obeying the following rules of addition and multiplication If   then 1.      2.      as   Z= 3+4i

Continue Reading Definition ( Complex number)

## Properties of complex Numbers with respect to addition

There are following properties of complex numbers. Associative, additive identity, additive inverse and commutative properties. If     be the three complex numbers then    .   Associative property of addition 2.   Z + 0 = 0 + Z = Z  Additive identity 3.   Z + ( -Z ) = ( 0,0) = 0 Additive inverse property 4.    .  .  .  .  .  .  .  .  .  .  Commutative property of addition     READ Related topics      Properties of complex Numbers with respect to multiplication.      Definitions of complex numbers