Polar form of a complex number solutions

  Polar form of a complex number. If z= x + iy is a complex number. Then z = r ( cosθ + sinθ ) is called polar form or trigonometric form of a complex number.   By comparing real and imaginary parts of a complex number,  we get x = r cosθ           (1) y = r sinθ           (2)   By squaring above equations and adding we get       EXAMPLE       Express in polar form.     Solution   With and y = −1 we obtain   Now   and    which is an angle whose terminal side is in the first quadrant.But   since the point lies in the third quadrant, we take the solution So, Therefore, polar form of the number is   Solved Questions of polar form Polar of   click here Polar for of       click here Polar for of   click here Polar for of        click here Polar for of    click here Polar for of         click here CHALLENGE   write the given complex number in polar form first using an argument θ = Arg(z) 1.       2 2.    −10 3.     −3i 4.       6i 5.       1 + i 6.     …

Continue Reading Polar form of a complex number solutions