Breaking News
Home / Differential Equations Notes / order and degree

# order and degree

Solutions of examples.

In this post we will provide the solution of two examples i.e order and degree of differential equations given below

1. $\left&space;[1+&space;\left&space;(\frac{dy}{dx}&space;\right&space;)^2&space;\right&space;]^{3/2}=\frac{d^2y}{dx^2}$

Taking square on both sides

$\left&space;[1+&space;\left&space;(\frac{dy}{dx}&space;\right&space;)^2&space;\right&space;]^{3/2&space;\times&space;2}=\left&space;(\frac{d^2y}{dx^2}&space;\right&space;)^2\\&space;=\left&space;[1+&space;\left&space;(\frac{dy}{dx}&space;\right&space;)^2&space;\right&space;]^{3}=\left&space;(\frac{d^2y}{dx^2}&space;\right&space;)^2&space;\\&space;\Rightarrow&space;order=02\\&space;\Rightarrow&space;degree=02\\$

1. $\frac{dy}{dx}&space;+\left&space;[1+&space;\left&space;(\frac{dy}{dx}&space;\right&space;)^2&space;\right&space;]^{3/2}=0$

Taking square on both sides

$\left&space;(\frac{dy}{dx}&space;\right&space;)^2&space;+\left&space;[1+&space;\left&space;(\frac{dy}{dx}&space;\right&space;)^2&space;\right&space;]^{3/2&space;\times&space;2}=0\\&space;\,\,\&space;\left&space;(\frac{dy}{dx}&space;\right&space;)^2&space;+\left&space;[1+&space;\left&space;(\frac{dy}{dx}&space;\right&space;)^2&space;\right&space;]^{3}=0\\$

Now open cube then we get

order =     01

degree =  06